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An approximate method is presented for the determination of the efficiency with 
which an elastic plate reduces turbulent friction, and experimental results are 
also presented. 

We know of a rather large quantity of experimental data needed as a basis for the mech- 
anisms of interaction between an elastic plate and a turbulent flow, and for the development 
of appropriate theories. The most familiar models of such mechanisms are given in [I] (ab- 
sorption by an elastic plate of the energy of turbulent pulsations), [2] (interferential 
frequency interaction of the vibrations of an elastic plate with the vibrations of a viscous 
substrate), [3] (the frequency interaction of elastic-plate vibrations with the ejecta from 
a viscous substrate), [4, 5] (the structural interaction of an elastic plate with the per- 
turbing motion of the boundary layer). 

The basis for all of these hypotheses, in part or totally, is the idea of resonance 
frequency and energy conformity in the vibrations of an elastic plate to pressure pulses 
and the displacement of a boundary layer. In this connection, of decisive importance is 
a study of the quantitative relationships governing the development of forced and intrinsic 
vibrations of the elastic plate, caused by pulsations of the boundary layer. The difference 
in these hypotheses lies in the fact that the induced force is treated either in the form 
of a harmonic vibration (monoharmonics, a static field of harmonic vibrations) or in the 
form of discrete bursts of a pulsation field (for example, determined by the frequency of 
pulses from a viscous substrate). 

Therefore, for the formulation and solution of the corresponding problem it is necessary 
to specify the boundary conditions at the wall, for example, in the form of harmonic vibra- 
tions which account for the mechanical characteristics of an elastic plate. Differential 
equations of liquid motion are given in the form of Prandtl equations and continuity equa- 
tions, or enlarged by the equation of boundary-layer energy balance. However, the theoretical 
problem is complicated by the fact that the boundary conditions depend on the solution of 
a system of equations, i.e., the problem remains indeterminate. To remove this indeterminacy, 
we introduce a variety of assumptions to link the vibrations at the wall or in the boundary 
layer, for example, either in terms of a phase shift, or in terms of conductivity, as is 
done in acoustics or electrodynamics. 

Thus to solve the problem we have to study the quantitative relationships governing 
the vibrations of an elastic plate subjected to isolated, periodic, or statistical interre- 
lated external disturbances. The nature of this interrelationship is governed by the con- 
struction and material composition of the elastic plate and, in first approximation, can 
be studied on the basis of familiar methods from the theory of elasticity and the damping 
of vibrations. Elastic plates in the form of membrane surfaces are more conveniently studied 
by means of the Voigt-Kelvin model. The equations of motion for such multilayered plates, 
used for purposes of calculating hydrodynamic stability [4, 6], are written in the form [7]: 
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An analogous Kornekki equation was used in [6], and similar equations are also to be found 
in [3]. 

If the elastic plate is fashioned out of a monolithic single-layer or multilayer materi- 
al, then Eq. (i) becomes considerably more complex. An equation of motion was derived in 
[i] for a single-layer monolithic elastic plate; this equation defines the relationship of 
the strain tensor to the stress tensor: 

1 0 
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When the elastic plate interacts with a turbulent boundary layer, we find a constant 
statistically distributed excitation of vibrations within the plate. In accordance with 
the well-known mechanical properties of elastic high-molecular materials, the energy of the 
boundary layer acting on the plate is partially accumulated (~) in the elastomer and partial- 
ly dissipated (~). This latter quantity can be calculated by introducing an absorption fac- 
tor r i = m~/~ for a coating segment of unit width, of thickness h i and length ~ = 2~/~ over 
a period of vibration relative to the initially accumulated energy. That part of the energy 
accumulated in the coating can be determined by introducing the coefficient r 2 = (E - m~)/E. 

The expressions for E and ~ have the form [I] 
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Calculations [8] and experiments [9] showed that as long as the thickness of the elastic 
layer does not exceed the minimum wavelength of the wavelength range under consideration, 
a periodicity is observed in the variations in density, in the magnitude of the accumulated 
energy, and in the rate of dissipation. 

As the thickness of the layer increases, there is a redistribution in the densities 
of ~ and E and their maxima shift toward the region of greater wavelengths. Because of an 
increase in viscosity, the maximum values of the accumulated energy are shifted into the 
low-frequency band. Within the covered range of parameters for the mechanical properties 
of the elastomer [K = 1.108 N/m 2, G = 2.105 N/m 2, D = 5"(103-104 ) N'sec/m 2, h = 5.(10-3-10 -2 ) 
m] energy is accumulated and dissipated in the range f = 0-500 sec -I 

Thus, by varying the number of layers, their construction and material properties, we 
can achieve a variety of absorption effects with regard to the pulsation energy of the boun- 
dary layer in various energy-carrying boundary-layer frequency bands. 

However, we know that in fabricating elastomer materials it is difficult to maintain 
specific mechanical properties in an adequate number of the fabricated plates. 

Moreover, the mechanical parameters depend strongly on the temperature, while the com- 
plex modulus of elasticity is also dependent on the frequency of the forced vibrations. There- 
fore, for successful application of elastomers in actual practice it is necessary to develop 
an approximate theory for the selection of elastomers with a sufficiently high probability 
of ensuring the specified parameters of their mechanical characteristics. Essentially this 
method involves the following. An elastic plate interacts with a flow when the frequency 
bands are approximately coincident and correspond to the regions of greatest energy-carrying 
frequencies in a turbulent boundary layer, as well as to the greatest absorption of mechani- 
cal vibrations by the elastic surface. In this case, the mechanical characteristics of the 
elastomer must be such that the energy of the turbulent pressure and shear pulsations is 
adequate to excite surface vibrations in the elastomer. A specific phase shift must be 
achieved between the forced vibrations and those induced within the elastomer [i0], and the 
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Fig. i. Resistance coefficient C x of longitudinally stream- 
lined elastic (1-9) and rigid (i0) cylinders, as well as the 
coefficient ~ of resistance reduction, as functions of the 
Reynolds number (the number of the elastic surface corresponds 
to the number in Table i); ii) mean square error in measure- 
ment of o5C x (Re); 12, 13) plate resistance in transition and 

turbulent flows; 14) range of energy transporting frequencies 
Um/~ t of the pulsation load in the boundary layer as a function 
of Re L at the end of the elastic insert. U~/6t, sec -I 

TABLE i. 

Z 

1 
2 
3 
4 
5 

Geometric Parameters of Elastic Plates 

Elastomer 

PPU-3-A 
PPU-3~A 
PPU-3-A 
PPU-3-B 
PPU-3-B 

hlL 

0,01062 
0,00531 
0,00265 
0,01062 
0.00531 

Elastomer 

PPU-3-B 
PPU-3-C 
PPU-3-C 
PPU-3-C 

hi/.. 

0,00265 
0,01062 
O, 00531 
0,00265 

vibrations themselves should not exceed the limits of allowable magnitude [2, 3, ii]. In 
this case, the elastomer will take the energy of the turbulent boundary layer and partially 
absorb it, which results in a thickening of the viscous substrate, in a reduction in friction 
at the wall, and in an increase in the period of the pulses from the viscous substrate. 

integral 2Jtgq(~)d~ defines the area encompassed by the curve of the function The 

relating the tangent tan T of the loss angle to the frequency ~ of tne forced vibrations. 
Usually, the loss curve exhibits a single vibration-frequency maximum at which we find the 
greatest loss of energy in the mechanical vibrations of the material, i.e., the elastomer 
scatters the greatest amount of energy in that frequency band. Therefore, an elastic plate 
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will be effective when the indicated frequency band coincides with the energy-carrying spec- 
trum of turbulent pulsations for the corresponding range of flow ve]ocities. 

Based on the above, the choice of a specific elastic material be'~ins with the experi- 
mental determination of the curve tan ~(w). We know that the frequency U~/~ t corresponds 
for each Re to the range of the highest energy-carrying pulsations. Thus, at the frequency 
U=/6 t, which corresponds to tan~max , for the given elastic plate we must establish the 
greatest effect of reducing frictional drag. 

Results from an experimental verification of the proposed method are given in [11] for 
elastic inserts mounted in the form of rectangular panels in a hydrodynamic test stand and 
on a tow plate. Despite the verification, the accuracy of the measurements raised some 
doubts, since the data obtained during the tests on the plates depend significantly on the 
longitudinal pressure distribution, as well as on the experimental technique. In this con- 
nection, the studies were performed with tensiometric inserts in the form of longitudinally 
streamlined cylinders. The test method is described in [12] in which it is demonstrated 
that such a tensiometer simulates the measurements on a plate. The frictional resistance 
of the elastic cylinders was determined by towing them through the channel. A hollow metal 
cylinder with a polished surface served as the referenced standard of a rigid surface. The 
outside diameter of the elastic cylinders, as well as the roughness, correspond to this stan- 
dard. 

The data on certain mechanical parameters of the elastomers employed here are presented 
in [II]. Their dynamic properties were determined by the method of forced nonresonant vibra- 
tions on a specially developed experimental installation. The dynamic modulus of elasticity 
for a number ofelastic materials is significantly greater than for the materials tested 
earlier [11]. In our experiments the rigidity of the elastic materials varied not only as 
a consequence of the difference in the quantity E', but also because of changes in their geo- 
metric parameters (see Table i). 

Results from the measurement of the coefficient of friction for longitudinally stream- 
lined elastic cylinders are presented in Fig. I. The frequencies U~/6 t were calculated from 
the towing velocity and from the Re L number, and the quantity 6t(x) was determined from form- 
ula 6t(x) = 0.37xRex -~ where x = L. 

We observed the hydrodynamic effect on all of the elastic plates over the entire range 
of Re numbers. The exception (specimen No. 9) was a result of the slight separation of the 
elastic wall from the base at the beginning of the cylinder, which in the case of Rema x re- 
sulted in an increase in the resistance relative to that of the standard. 

In all cases, the maximum effect is determined by correlation of the dynamic elastomer 
properties with the energy-carrying frequencies of the pulsation load for the turbulent boun- 
dary layer. We will use specimen No. 4 to examine the results shown in Fig. i. Below Re = 
5.106 the effect is almost constant and a result of the fact that according to curve 14 (see 
Fig. i), the frequency of the pulsation load does not exceed ~250 sec -~ According to the 
data of Fig. 2 in [11], this material in the indicated frequency range exhibits a constant 
tan ~ = 0.6. With a subsequent increase in the Re numbers there is a rise in the frequency 
of the load, and according to [ii], tan ~ = 0.9 = max when ~ ~ 500-800 sec -I. According 
to curve 14, this corresponds to Re ~ i.3.107. Consequently, the established maximum effect 
corresponds precisely to those frequencies at which the elastomer exhibits maximum absorption 
properties (tan ~ = max). This also serves to explain that according to Table i, for speci- 
mens Nos. 4-6, h 4 > h s > h 6. In this case ($max)~ > (~max)s > (~max)~, which is determined 
by the rigidity of the material and, consequently, by the dynamic properties and the frequen- 
cy shift (tan~max). 

NOTATION 

x and y, longitudinal and vertical coordinates, m; ~j, shift along the coordinate axes, 
m; j = I, 2, the x and y coordinates; Ey, shift in the direction of the pressure effect, 
m; s = 2~/m, unit length of the plate; ~, wave number; hi, thickness of the elastic layer, m; 
& = (85x/SX) + (~y/~y), strain tensor; L, distance from the beginning of the tensiometer 
to the end of the tensiometric insert, m; 6 t, thickness of the turbulent boundary layer, m; 
t, time, sec; ~k, strain relaxation time, sec; f, frequency of boundary-layer vibration, Hz; 
m, angular frequency of the forced vibrations, sec-1; U~/~t, maximum energy-carrying boundary- 
layer frequency, sec-1; U~, velocity, m/sec; V z, Laplace operator; Re, Reynolds number; Ti, 

147 



tension within the elastic layer, N/m2; Mi, vibrating mass of the elastomer, kg.sec2/m3; 
p, density of the elastomer, kg/m3; El, modulus of elasticity, N/m2; E i' = El/hi, rigidity 
of the elastic layer, N/m3; i, number of plate layer; s163 , complex modulus of elasti- 
city; E'(m), modulus of elasticity; E"(m), loss modulus; tan ~ = E"/s energy-loss coeffi- 
cient (the loss tangent); P, surface pulsation pressure, N/m2; Obend , bending stress in the 
plate, N/m2; G, shear modulus, N/m2; Hi, viscosity of the elastic layer, N.sec/m2; %, Lame 
parameter; K = % + 2/3G, volumetric modulus of elasticity, N/m2; ~k = G~k, shear viscosity, 
N'sec/m2; ~, portion of the boundary-layer energy accumulated in the elastomer; ~, dissipated 
portion of the energy; r I = ~/~, coefficient of absorption for potential energy; r 2 = (~ - 
T#)/~, coefficient of the potential energy of the boundary layer accumulated in the elastomer; 
C x, coefficient of frictional resistance; $ = (Cxrigid - Cxelast)Cxrigid -I, coefficient of 
reduction in frictional resistance. 
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INVESTIGATION OF EHD FLOW BASED ON A NUMERICAL SOLUTION 

OF THE NAVIER-STOKES EQUATIONS 

L. P. Pasechnik and I. V. Ufatov UDC 532.516 

The proposed numerical method is used to examine the physical pattern of EHD 
flow at a high-voltage flat electrode. 

Electrohydrodynamic (EHD) flows of low-conductivity liquids from a high-voltage electrode 
have been studied both theoretically and experimentally in numerous works (see, for example, 
[1-4]). Despite a superficial similarity in the EHD flow patterns and those of a Landau- 
Slezkin "submerged jet," the latter cannot be treated as a sufficiently exact model of EHD 
flow. In particular, in the case of an immersed electrode it makes no provision for the ef- 
fect of the friction of the jet against the wall of the vessel. An estimate i~ presented 
in [i] of the possible velocity of isothermal electrical convection as part of a study of 
the laminar flow of an incompressible dielectric liquid around an electrode. According to 
[1, 2] the flow is caused primarily by a Coulomb force acting on the space charge that is 
formed because of a nonuniformity in electrical conductivity that is weak but different from 
zero. A semiempirical formula was proposed in [I] for a steady-state charge, and by means 
of this formula it became possible qualitatively to describe the phenomena of electrical con- 
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